Part Number Hot Search : 
TK65218 SE258 C0723A 74LS37 00BZI V0078 2SA1396 SR10150
Product Description
Full Text Search
 

To Download PCF8574ATS Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  d a t a sh eet product speci?cation supersedes data of 2002 jul 29 2002 nov 22 integrated circuits pcf8574 remote 8-bit i/o expander for i 2 c-bus
2002 nov 22 2 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 contents 1 features 2 general description 3 ordering information 4 block diagram 5 pinning 5.1 dip16 and so16 packages 5.2 ssop20 package 6 characteristics of the i 2 c-bus 6.1 bit transfer 6.2 start and stop conditions 6.3 system configuration 6.4 acknowledge 7 functional description 7.1 addressing 7.2 interrupt output 7.3 quasi-bidirectional i/os 8 limiting values 9 handling 10 dc characteristics 11 i 2 c-bus timing characteristics 12 package outlines 13 soldering 13.1 introduction 13.2 through-hole mount packages 13.2.1 soldering by dipping or by solder wave 13.2.2 manual soldering 13.3 surface mount packages 13.3.1 reflow soldering 13.3.2 wave soldering 13.3.3 manual soldering 13.4 suitability of ic packages for wave, reflow and dipping soldering methods 14 data sheet status 15 definitions 16 disclaimers 17 purchase of philips i 2 c components
2002 nov 22 3 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 1 features operating supply voltage 2.5 to 6 v low standby current consumption of 10 m a maximum i 2 c-bus to parallel port expander open-drain interrupt output 8-bit remote i/o port for the i 2 c-bus compatible with most microcontrollers latched outputs with high current drive capability for directly driving leds address by 3 hardware address pins for use of up to 8 devices (up to 16 with pcf8574a) dip16, or space-saving so16 or ssop20 packages. 2 general description the pcf8574 is a silicon cmos circuit. it provides general purpose remote i/o expansion for most microcontroller families via the two-line bidirectional bus (i 2 c-bus). the device consists of an 8-bit quasi-bidirectional port and an i 2 c-bus interface. the pcf8574 has a low current consumption and includes latched outputs with high current drive capability for directly driving leds. it also possesses an interrupt line ( int) which can be connected to the interrupt logic of the microcontroller. by sending an interrupt signal on this line, the remote i/o can inform the microcontroller if there is incoming data on its ports without having to communicate via the i 2 c-bus. this means that the pcf8574 can remain a simple slave device. the pcf8574 and pcf8574a versions differ only in their slave address as shown in fig.10. 3 ordering information type number package name description version pcf8574p; pcf8574ap dip16 plastic dual in-line package; 16 leads (300 mil) sot38-4 pcf8574t; pcf8574at so16 plastic small outline package; 16 leads; body width 7.5 mm sot162-1 pcf8574ts; PCF8574ATS ssop20 plastic shrink small outline package; 20 leads; body width 4.4 mm sot266-1
2002 nov 22 4 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 4 block diagram fig.1 block diagram (pin numbers apply to dip16 and so16 packages). handbook, full pagewidth mbd980 i c bus control 2 input filter 1 2 3 14 15 13 interrupt logic 12 p7 11 p6 10 p5 9 p4 7 p3 6 p2 5 p1 4 p0 8 bit i/o port shift register lp filter write pulse read pulse power-on reset 16 8 v dd v ss sda scl a2 a1 a0 int pcf8574
2002 nov 22 5 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 5 pinning 5.1 dip16 and so16 packages symbol pin description a0 1 address input 0 a1 2 address input 1 a2 3 address input 2 p0 4 quasi-bidirectional i/o 0 p1 5 quasi-bidirectional i/o 1 p2 6 quasi-bidirectional i/o 2 p3 7 quasi-bidirectional i/o 3 v ss 8 supply ground p4 9 quasi-bidirectional i/o 4 p5 10 quasi-bidirectional i/o 5 p6 11 quasi-bidirectional i/o 6 p7 12 quasi-bidirectional i/o 7 int 13 interrupt output (active low) scl 14 serial clock line sda 15 serial data line v dd 16 supply voltage handbook, halfpage 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 int a0 a1 a2 p0 p1 p2 p3 sda v ss scl p7 p6 p5 p4 v dd pcf8574p pcf8574ap mbd979 fig.2 pin configuration (dip16). handbook, halfpage 1 2 3 4 5 6 7 8 16 15 14 13 12 11 10 9 int a0 a1 a2 p0 p1 p2 p3 sda v ss scl p7 p6 p5 p4 v dd pcf8574t pcf8574at mce001 fig.3 pin configuration (so16).
2002 nov 22 6 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 5.2 ssop20 package symbol pin description int 1 interrupt output (active low) scl 2 serial clock line n.c. 3 not connected sda 4 serial data line v dd 5 supply voltage a0 6 address input 0 a1 7 address input 1 n.c. 8 not connected a2 9 address input 2 p0 10 quasi-bidirectional i/o 0 p1 11 quasi-bidirectional i/o 1 p2 12 quasi-bidirectional i/o 2 n.c. 13 not connected p3 14 quasi-bidirectional i/o 3 v ss 15 supply ground p4 16 quasi-bidirectional i/o 4 p5 17 quasi-bidirectional i/o 5 n.c. 18 not connected p6 19 quasi-bidirectional i/o 6 p7 20 quasi-bidirectional i/o 7 handbook, halfpage 1 2 3 4 5 6 7 8 9 10 20 19 18 17 16 15 14 13 12 11 int scl n.c. sda v dd a0 a1 n.c. a2 p0 p7 p6 n.c. p5 v ss p4 p3 n.c. p2 p1 pcf8574ts PCF8574ATS mbd978 fig.4 pin configuration (ssop20).
2002 nov 22 7 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 6 characteristics of the i 2 c-bus the i 2 c-bus is for 2-way, 2-line communication between different ics or modules. the two lines are a serial data line (sda) and a serial clock line (scl). both lines must be connected to a positive supply via a pull-up resistor when connected to the output stages of a device. data transfer may be initiated only when the bus is not busy. 6.1 bit transfer one data bit is transferred during each clock pulse. the data on the sda line must remain stable during the high period of the clock pulse as changes in the data line at this time will be interpreted as control signals (see fig.5). 6.2 start and stop conditions both data and clock lines remain high when the bus is not busy. a high-to-low transition of the data line, while the clock is high is defined as the start condition (s). a low-to-high transition of the data line while the clock is high is defined as the stop condition (p) (see fig.6). 6.3 system con?guration a device generating a message is a transmitter, a device receiving is the receiver. the device that controls the message is the master and the devices which are controlled by the master are the slaves (see fig.7). fig.5 bit transfer. handbook, full pagewidth mbc621 data line stable; data valid change of data allowed sda scl fig.6 definition of start and stop conditions. handbook, full pagewidth mbc622 sda scl p stop condition sda scl s start condition fig.7 system configuration. mba605 master transmitter / receiver slave receiver slave transmitter / receiver master transmitter master transmitter / receiver sda scl
2002 nov 22 8 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 6.4 acknowledge the number of data bytes transferred between the start and the stop conditions from transmitter to receiver is not limited. each byte of eight bits is followed by one acknowledge bit (see fig.8). the acknowledge bit is a high level put on the bus by the transmitter whereas the master generates an extra acknowledge related clock pulse. a slave receiver which is addressed must generate an acknowledge after the reception of each byte. also a master must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. the device that acknowledges has to pull down the sda line during the acknowledge clock pulse, so that the sda line is stable low during the high period of the acknowledge related clock pulse, set-up and hold times must be taken into account. a master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. in this event the transmitter must leave the data line high to enable the master to generate a stop condition. fig.8 acknowledgment on the i 2 c-bus. handbook, full pagewidth mbc602 s start condition 9 8 2 1 clock pulse for acknowledgement not acknowledge acknowledge data output by transmitter data output by receiver scl from master
2002 nov 22 9 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 7 functional description fig.9 simplified schematic diagram of each i/o. handbook, full pagewidth mbd977 dq c i s ff dq c i s ff 100 m a to interrupt logic v ss p0 to p7 v dd write pulse data from shift register power-on reset read pulse data to shift register 7.1 addressing for addressing see figs 10, 11 and 12. fig.10 pcf8574 and pcf8574a slave addresses. handbook, full pagewidth mbd973 s 0 1 0 0 a2 a1 a0 0 a 1 0 slave address slave address a s 0 1 1 a2 a1 a0 a. pcf8574. b. pcf8574a. each of the pcf8574s eight i/os can be independently used as an input or output. input data is transferred from the port to the microcontroller by the read mode (see fig.12). output data is transmitted to the port by the write mode (see fig.11).
this text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the acrobat reader .this text is here in _ white to force landscape pages to be rotated correctly when browsing through the pdf in the acrobat reader.this text is here inthis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the acrobat reader. white to force landscape pages to be ... 2002 nov 22 10 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 a ndbook, full pagewidth mbd974 s 0 1 0 0 a2 a1 a0 0 a start condition data 1 r/w acknowledge from slave a data 2 a sda scl write to port t pv data out from port slave address (pcf8574) data to port data to port 12345678 acknowledge from slave acknowledge from slave t pv data 2 valid data 1 valid fig.11 write mode (output).
this text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the acrobat reader .this text is here in _ white to force landscape pages to be rotated correctly when browsing through the pdf in the acrobat reader.this text is here inthis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the acrobat reader. white to force landscape pages to be ... 2002 nov 22 11 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 handbook, full pagewidth mbd975 s 0 1 0 0 a2 a1 a0 1 a start condition data 1 r/w acknowledge from slave a data 4 1 sda read from port t ph data into port slave address (pcf8574) data from port data from port acknowledge from slave stop condition t ps data 4 p data 2 data 3 t ir t ir t iv int fig.12 read mode (input). a low-to-high transition of sda, while scl is high is defined as the stop condition (p). transfer of data can be stopped at any moment by a stop condition. when this occurs, data present at the last acknowledge phase is valid (output mode). input data is lost.
2002 nov 22 12 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 7.2 interrupt output the pcf8574 provides an open-drain output ( int) which can be fed to a corresponding input of the microcontroller (see figs 13 and 14). this gives these chips a type of master function which can initiate an action elsewhere in the system. an interrupt is generated by any rising or falling edge of the port inputs in the input mode. after time t iv the signal int is valid. resetting and reactivating the interrupt circuit is achieved when data on the port is changed to the original setting or data is read from or written to the port which has generated the interrupt. resetting occurs as follows: in the read mode at the acknowledge bit after the rising edge of the scl signal in the write mode at the acknowledge bit after the high-to-low transition of the scl signal interrupts which occur during the acknowledge clock pulse may be lost (or very short) due to the resetting of the interrupt during this pulse. each change of the i/os after resetting will be detected and, after the next rising clock edge, will be transmitted as int. reading from or writing to another device does not affect the interrupt circuit. 7.3 quasi-bidirectional i/os a quasi-bidirectional i/o can be used as an input or output without the use of a control signal for data direction (see fig.15). at power-on the i/os are high. in this mode only a current source to v dd is active. an additional strong pull-up to v dd allows fast rising edges into heavily loaded outputs. these devices turn on when an output is written high, and are switched off by the negative edge of scl. the i/os should be high before being used as inputs. handbook, full pagewidth mbd976 microcontroller int int int pcf8574 (1) pcf8574 (2) v dd int pcf8574 (16) fig.13 application of multiple pcf8574s with interrupt. fig.14 interrupt generated by a change of input to i/o p5. handbook, full pagewidth mbd972 s 0 1 0 0 a2 a1 a0 1 a start condition 1 p5 r/w acknowledge from slave 1 sda scl data into p5 t ir int slave address (pcf8574) data from port 12345678 p stop condition t iv
this text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the acrobat reader .this text is here in _ white to force landscape pages to be rotated correctly when browsing through the pdf in the acrobat reader.this text is here inthis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the acrobat reader. white to force landscape pages to be ... 2002 nov 22 13 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 handbook, full pagewidth mbd971 s 0 1 1 1 a2 a1 a0 0 a start condition 1 p3 r/w acknowledge from slave a 0 p3 a p sda scl p3 output voltage i oht i oh p3 pull-up output current slave address (pcf8574a) data to port data to port 12345678 fig.15 transient pull-up current i oht while p3 changes from low-to-high and back to low.
2002 nov 22 14 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 8 limiting values in accordance with the absolute maximum rating system (iec 60134). 9 handling inputs and outputs are protected against electrostatic discharge in normal handling. however it is good practice to take normal precautions appropriate to handling mos devices (see handling mos devices ). 10 dc characteristics v dd = 2.5 to 6 v; v ss = 0 v; t amb = - 40 to +85 c; unless otherwise speci?ed. symbol parameter min. max. unit v dd supply voltage - 0.5 +7.0 v v i input voltage v ss - 0.5 v dd + 0.5 v i i dc input current - 20 ma i o dc output current - 25 ma i dd supply current - 100 ma i ss supply current - 100 ma p tot total power dissipation - 400 mw p o power dissipation per output - 100 mw t stg storage temperature - 65 +150 c t amb ambient temperature - 40 +85 c symbol parameter conditions min. typ. max. unit supply v dd supply voltage 2.5 - 6.0 v i dd supply current operating mode; v dd =6v; no load; v i =v dd or v ss ; f scl = 100 khz - 40 100 m a i stb standby current standby mode; v dd =6v; no load; v i =v dd or v ss - 2.5 10 m a v por power-on reset voltage v dd = 6 v; no load; v i =v dd or v ss ; note 1 - 1.3 2.4 v input scl; input/output sda v il low level input voltage - 0.5 - +0.3v dd v v ih high level input voltage 0.7v dd - v dd + 0.5 v i ol low level output current v ol = 0.4 v 3 -- ma i l leakage current v i =v dd or v ss - 1 - +1 m a c i input capacitance v i =v ss -- 7pf
2002 nov 22 15 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 note 1. the power-on reset circuit resets the i 2 c-bus logic at v dd 2002 nov 22 16 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 11 i 2 c-bus timing characteristics note 1. all the timing values are valid within the operating supply voltage and ambient temperature range and refer to v il and v ih with an input voltage swing of v ss to v dd . symbol parameter min. typ. max. unit i 2 c-bus timing (see fig.16; note 1) f scl scl clock frequency -- 100 khz t sw tolerable spike width on bus -- 100 ns t buf bus free time 4.7 --m s t su;sta start condition set-up time 4.7 --m s t hd;sta start condition hold time 4.0 --m s t low scl low time 4.7 --m s t high scl high time 4.0 --m s t r scl and sda rise time -- 1.0 m s t f scl and sda fall time -- 0.3 m s t su;dat data set-up time 250 -- ns t hd;dat data hold time 0 -- ns t vd;dat scl low to data out valid -- 3.4 m s t su;sto stop condition set-up time 4.0 --m s fig.16 i 2 c-bus timing diagram. handbook, full pagewidth protocol scl sda mbd820 bit 0 lsb (r/w) t hd;sta t su;dat t hd;dat t vd;dat t su;sto t f r t t buf t su;sta t low t high 1 / f scl start condition (s) bit 7 msb (a7) bit 6 (a6) acknowledge (a) stop condition (p)
2002 nov 22 17 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 12 package outlines references outline version european projection issue date iec jedec eiaj sot38-4 92-11-17 95-01-14 m h c (e ) 1 m e a l seating plane a 1 w m b 1 b 2 e d a 2 z 16 1 9 8 e pin 1 index b 0 5 10 mm scale note 1. plastic or metal protrusions of 0.25 mm maximum per side are not included. unit a max. 12 b 1 (1) (1) (1) b 2 cd e e m z h l mm dimensions (inch dimensions are derived from the original mm dimensions) a min. a max. b max. w m e e 1 1.73 1.30 0.53 0.38 0.36 0.23 19.50 18.55 6.48 6.20 3.60 3.05 0.254 2.54 7.62 8.25 7.80 10.0 8.3 0.76 4.2 0.51 3.2 inches 0.068 0.051 0.021 0.015 0.014 0.009 1.25 0.85 0.049 0.033 0.77 0.73 0.26 0.24 0.14 0.12 0.01 0.10 0.30 0.32 0.31 0.39 0.33 0.030 0.17 0.020 0.13 dip16: plastic dual in-line package; 16 leads (300 mil) sot38-4
2002 nov 22 18 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 unit a max. a 1 a 2 a 3 b p cd (1) e (1) (1) eh e ll p q z y w v q references outline version european projection issue date iec jedec eiaj mm inches 2.65 0.30 0.10 2.45 2.25 0.49 0.36 0.32 0.23 10.5 10.1 7.6 7.4 1.27 10.65 10.00 1.1 1.0 0.9 0.4 8 0 o o 0.25 0.1 dimensions (inch dimensions are derived from the original mm dimensions) note 1. plastic or metal protrusions of 0.15 mm maximum per side are not included. 1.1 0.4 sot162-1 8 16 w m b p d detail x z e 9 1 y 0.25 075e03 ms-013 pin 1 index 0.10 0.012 0.004 0.096 0.089 0.019 0.014 0.013 0.009 0.41 0.40 0.30 0.29 0.050 1.4 0.055 0.419 0.394 0.043 0.039 0.035 0.016 0.01 0.25 0.01 0.004 0.043 0.016 0.01 x q a a 1 a 2 h e l p q e c l v m a (a ) 3 a 0 5 10 mm scale so16: plastic small outline package; 16 leads; body width 7.5 mm sot162-1 97-05-22 99-12-27
2002 nov 22 19 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 unit a 1 a 2 a 3 b p cd (1) e (1) (1) eh e ll p qz y w v q references outline version european projection issue date iec jedec eiaj mm 0.15 0 1.4 1.2 0.32 0.20 0.20 0.13 6.6 6.4 4.5 4.3 0.65 1.0 0.2 6.6 6.2 0.65 0.45 0.48 0.18 10 0 o o 0.13 0.1 dimensions (mm are the original dimensions) note 1. plastic or metal protrusions of 0.20 mm maximum per side are not included. 0.75 0.45 sot266-1 mo-152 95-02-22 99-12-27 w m q a a 1 a 2 b p d h e l p q detail x e z e c l v m a x (a ) 3 a y 0.25 110 20 11 pin 1 index 0 2.5 5 mm scale ssop20: plastic shrink small outline package; 20 leads; body width 4.4 mm sot266-1 a max. 1.5
2002 nov 22 20 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 13 soldering 13.1 introduction this text gives a very brief insight to a complex technology. a more in-depth account of soldering ics can be found in our data handbook ic26; integrated circuit packages (document order number 9398 652 90011). there is no soldering method that is ideal for all ic packages. wave soldering is often preferred when through-hole and surface mount components are mixed on one printed-circuit board. wave soldering can still be used for certain surface mount ics, but it is not suitable for fine pitch smds. in these situations reflow soldering is recommended. 13.2 through-hole mount packages 13.2.1 s oldering by dipping or by solder wave the maximum permissible temperature of the solder is 260 c; solder at this temperature must not be in contact with the joints for more than 5 seconds. the total contact time of successive solder waves must not exceed 5 seconds. the device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature (t stg(max) ). if the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit. 13.2.2 m anual soldering apply the soldering iron (24 v or less) to the lead(s) of the package, either below the seating plane or not more than 2 mm above it. if the temperature of the soldering iron bit is less than 300 c it may remain in contact for up to 10 seconds. if the bit temperature is between 300 and 400 c, contact may be up to 5 seconds. 13.3 surface mount packages 13.3.1 r eflow soldering reflow soldering requires solder paste (a suspension of fine solder particles, flux and binding agent) to be applied to the printed-circuit board by screen printing, stencilling or pressure-syringe dispensing before package placement. several methods exist for reflowing; for example, convection or convection/infrared heating in a conveyor type oven. throughput times (preheating, soldering and cooling) vary between 100 and 200 seconds depending on heating method. typical reflow peak temperatures range from 215 to 250 c. the top-surface temperature of the packages should preferable be kept below 220 c for thick/large packages, and below 235 c for small/thin packages. 13.3.2 w ave soldering conventional single wave soldering is not recommended for surface mount devices (smds) or printed-circuit boards with a high component density, as solder bridging and non-wetting can present major problems. to overcome these problems the double-wave soldering method was specifically developed. if wave soldering is used the following conditions must be observed for optimal results: use a double-wave soldering method comprising a turbulent wave with high upward pressure followed by a smooth laminar wave. for packages with leads on two sides and a pitch (e): C larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be parallel to the transport direction of the printed-circuit board; C smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the transport direction of the printed-circuit board. the footprint must incorporate solder thieves at the downstream end. for packages with leads on four sides, the footprint must be placed at a 45 angle to the transport direction of the printed-circuit board. the footprint must incorporate solder thieves downstream and at the side corners. during placement and before soldering, the package must be fixed with a droplet of adhesive. the adhesive can be applied by screen printing, pin transfer or syringe dispensing. the package can be soldered after the adhesive is cured. typical dwell time is 4 seconds at 250 c. a mildly-activated flux will eliminate the need for removal of corrosive residues in most applications. 13.3.3 m anual soldering fix the component by first soldering two diagonally-opposite end leads. use a low voltage (24 v or less) soldering iron applied to the flat part of the lead. contact time must be limited to 10 seconds at up to 300 c. when using a dedicated tool, all other leads can be soldered in one operation within 2 to 5 seconds between 270 and 320 c.
2002 nov 22 21 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 13.4 suitability of ic packages for wave, re?ow and dipping soldering methods notes 1. for more detailed information on the bga packages refer to the (lf)bga application note (an01026); order a copy from your philips semiconductors sales office. 2. all surface mount (smd) packages are moisture sensitive. depending upon the moisture content, the maximum temperature (with respect to time) and body size of the package, there is a risk that internal or external package cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). for details, refer to the drypack information in the data handbook ic26; integrated circuit packages; section: packing methods . 3. for sdip packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board. 4. these packages are not suitable for wave soldering. on versions with the heatsink on the bottom side, the solder cannot penetrate between the printed-circuit board and the heatsink. on versions with the heatsink on the top side, the solder might be deposited on the heatsink surface. 5. if wave soldering is considered, then the package must be placed at a 45 angle to the solder wave direction. the package footprint must incorporate solder thieves downstream and at the side corners. 6. wave soldering is suitable for lqfp, qfp and tqfp packages with a pitch (e) larger than 0.8 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm. 7. wave soldering is suitable for ssop and tssop packages with a pitch (e) equal to or larger than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm. mounting package (1) soldering method wave reflow (2) dipping through-hole mount dbs, dip, hdip, sdip, sil suitable (3) - suitable surface mount bga, lbga, lfbga, sqfp, tfbga, vfbga not suitable suitable - hbcc, hbga, hlqfp, hsqfp, hsop, htqfp, htssop, hvqfn, hvson, sms not suitable (4) suitable - plcc (5) , so, soj suitable suitable - lqfp, qfp, tqfp not recommended (5)(6) suitable - ssop, tssop, vso not recommended (7) suitable -
2002 nov 22 22 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 14 data sheet status notes 1. please consult the most recently issued data sheet before initiating or completing a design. 2. the product status of the device(s) described in this data sheet may have changed since this data sheet was published. the latest information is available on the internet at url http://www.semiconductors.philips.com. 3. for data sheets describing multiple type numbers, the highest-level product status determines the data sheet status. level data sheet status (1) product status (2)(3) definition i objective data development this data sheet contains data from the objective speci?cation for product development. philips semiconductors reserves the right to change the speci?cation in any manner without notice. ii preliminary data quali?cation this data sheet contains data from the preliminary speci?cation. supplementary data will be published at a later date. philips semiconductors reserves the right to change the speci?cation without notice, in order to improve the design and supply the best possible product. iii product data production this data sheet contains data from the product speci?cation. philips semiconductors reserves the right to make changes at any time in order to improve the design, manufacturing and supply. relevant changes will be communicated via a customer product/process change noti?cation (cpcn). 15 definitions short-form specification ? the data in a short-form specification is extracted from a full data sheet with the same type number and title. for detailed information see the relevant data sheet or data handbook. limiting values definition ? limiting values given are in accordance with the absolute maximum rating system (iec 60134). stress above one or more of the limiting values may cause permanent damage to the device. these are stress ratings only and operation of the device at these or at any other conditions above those given in the characteristics sections of the specification is not implied. exposure to limiting values for extended periods may affect device reliability. application information ? applications that are described herein for any of these products are for illustrative purposes only. philips semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification. 16 disclaimers life support applications ? these products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. philips semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify philips semiconductors for any damages resulting from such application. right to make changes ? philips semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. when the product is in full production (status production), relevant changes will be communicated via a customer product/process change notification (cpcn). philips semiconductors assumes no responsibility or liability for the use of any of these products, conveys no licence or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.
2002 nov 22 23 philips semiconductors product speci?cation remote 8-bit i/o expander for i 2 c-bus pcf8574 17 purchase of philips i 2 c components purchase of philips i 2 c components conveys a license under the philips i 2 c patent to use the components in the i 2 c system provided the system conforms to the i 2 c specification defined by philips. this specification can be ordered using the code 9398 393 40011.
? koninklijke philips electronics n.v. 2002 sca74 all rights are reserved. reproduction in whole or in part is prohibited without the prior written consent of the copyright owne r. the information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice. no liability will be accepted by the publisher for any consequence of its use. publication thereof does not con vey nor imply any license under patent- or other industrial or intellectual property rights. philips semiconductors C a worldwide company contact information for additional information please visit http://www.semiconductors.philips.com . fax: +31 40 27 24825 for sales of?ces addresses send e-mail to: sales.addresses@www.semiconductors.philips.com . printed in the netherlands 403512/04/pp 24 date of release: 2002 nov 22 document order number: 9397 750 10462


▲Up To Search▲   

 
Price & Availability of PCF8574ATS

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X